National Exams May 2015

98-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- This is a OPEN BOOK exam.
 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.
 The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Question 1 (20 marks)

Figure 1. The diodes have a voltage drop V_D =0.7V in forward bias.

For the circuit shown in Figure 1:

- a) Sketch V_{i} and V_{o} as a function of time, indicating peak voltages.
- b) How should D_1 be rated for power consumption?
- c) What is the peak current in R₁?

Figure 2. The diodes have a voltage drop V_D =0.7V in forward bias.

For the circuit shown in Figure 2:

d)) Sketch the output waveform $V_o(t)$ in steady state. Label key voltages and times, and indicate changes in operating region for the diodes.

Question 2 (20 marks)

Figure 3. $k_n' = \mu_n C_{ox} = 1 \text{ mA/V}^2$, W/L=10, $V_{tn} = 1V$, $|V_A| = 100V$

For the circuit shown in Figure 3:

- a) For Vi=2V what is the current through Q3?
- b) What is V_{DS} for Q1?
- c) Draw a small signal equivalent model for the circuit.
- d) What is the small signal AC gain of the circuit?

Question 3 (20 marks)

For the circuit shown in Figure 4:

- a) Derive the transfer function $\frac{Vo(j\omega)}{Vi(j\omega)}$ for the circuit shown in Figure 4, assuming the op-amp is ideal.
- b) Sketch the frequency response, indicating the 3dB frequency for this circuit.
- c) If $V_i(t)=10\sin(120\pi t)$ V, find $V_o(j\omega)$.
- d) If $V_i(t) = 10\sin(120\pi t)$ V, find $V_o(t)$.

Question 4(20 marks)

Figure 5. V_{be} =0.7V (active), V_{ce} =0.2V (saturation), β =100.

For the circuit shown in Figure 5:

- a) If V_i =0V DC, find the DC bias point for Q1?
- b) Draw the small signal equivalent circuit and evaluate the small signal AC voltage gain.
- c) Sketch I_{c} vs V_{ce} and show the operating point for the transistor.
- d) How would you change the bias to obtain maximum signal swing?

Question 5 (20 marks)

Figure 6. Assume the gates are ideal and switch at $V_{DD}/2$.

For the circuit shown in Figure 6:

- a) Explain the operation of this circuit.
- b) Sketch the waveforms $V_{\text{c}}(t)$ and $V_{\text{out}}(t).$
- c) Find an expression for $V_c(t)$.
- d) Find the period of the waveform if R_1 =10 k Ω and C_1 =10 nF.

Question 6 (20 marks)

Figure 7. $k_n'=50 \mu A/V^2$, $k_p'=20 \mu A/V^2$, $V_{th}=-V_{tp}=1V$, $C_{ox}=1 fF/\mu m^2$, $V_{DD}=5V$.

- a) If the minimum gate length for this technology is 1 μ m, size Q_N and Q_P to obtain a symmetric transfer characteristic.
- b) Estimate the maximum capacitance this circuit can drive with a propagation delay of less than 200 ps.

Figure 8.

For the circuit shown in Figure 8:

- c) Determine outputs X and Y for all possible inputs A and B. ϕ is a clock signal.
- d) If Q_1 and Q_2 are sized as in part a), find a minimum size for Q_5 and Q_6 that will ensure X can be pulled down to $V_{DD}/2$ or lower.

Question 7 (20 marks)

Figure 9.

- a) What is a common name for the ADC circuit shown in Figure 9? What is a principal advantage of this circuit over other ADC implementations?
- b) What are the analog voltages at each of the comparator negative inputs? If V_{in} =3V what are the logic values for V_1 through V_4 ?
- c) List all possible combinations of V₁-V₄ and the corresponding binary output.
- d) In an integrated circuit, how could V_{ref} be generated?

Marking Scheme

1.	20 marks total	(4 parts, 5 marks each)
2.	20 marks total	(4 parts, 5 marks each)
3.	20 marks total	(4 parts, 5 marks each)
4.	20 marks total	(4 parts, 5 marks each)
5.	20 marks total	(4 parts, 5 marks each)
6.	20 marks total	(4 parts, 5 marks each)
7.	20 marks total	(4 parts, 5 marks each)