National Exams May 2012

04-Env-A3, Geotechnical and Hydrogeological Engineering

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. Five (5) questions constitute a complete exam paper.

 The first five questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. Some questions require an answer in written format. Clarity and organization of the answer are important.

1.(20 Marks)

The figure below shows a soil profile for a three-layer system.

- a. Determine the total stress, effective stress and pore pressure at point "A" in the figure for the conditions shown.
- b. If the piezometric head drops 1.0 m due to a change in water table, what is the effective stress at "A"?
- c. What piezometric head due to a change in water table location is required to make the effective stress at "A" = 0 kN/m²?

- 2.(20 Marks) The figure below shows a thin aquifer connecting two irrigation canals 1000 m apart and running parallel to each other. The canal to the left has a water surface elevation of 1007 m while that to the right has a water surface elevation of 1008.5 m. The sand aquifer connecting the two has a constant thickness of 1.5 m, bottom elevation of 1000 m, porosity of 0.35 and a saturated hydraulic conductivity of 250 m/d. The sand layer is confined from above by a clay layer.
 - a. Sketch the steady state piezometric height in the aquifer for the situation above.
 - b. What will be the discharge (in m²/day) in the aquifer from one canal to the other?
 - c. If a contaminant was accidently introduced into the canal on the right, how long would it take to reach the canal on the left?
 - d. If instead of a clay aquitard above, the sand continued to the surface, what would the discharge be?
 - e. If, in addition to the sand continuing to the ground surface as in part d, there was a recharge of 1.5 mm/day to the whole system:
 - a. What would the piezometric surface look like (sketch this), and
 - b. What would the discharge into the canal on the left be?

- 3.(20 Marks) The data in the table below are data collected from a falling head permeameter test conducted on a sample taken from the field. The sample has a diameter of 100 mm and a length of 150 mm. The standpipe used to measure the falling head is 10 mm in diameter. Determine:
 - a. The saturated hydraulic conductivity for the soil, and
 - b. Suggest what types of soil this might correspond to.

Time from start of test (s)	Height of water in standpipe above overflow (m)	
0	1.60	
60	1.51	
120	1.42	
240	1.26	
480	0.99	

- 4.(20 Marks)The figure on the last page of the examination shows a sheet pile wall used to keep an excavation dry. The material below the water above the impervious layer is homogeneous and isotropic with a saturated hydraulic conductivity of 6×10^{-4} m/s.
 - a. Using a flow net analysis, determine the seepage under the sheet pile wall per linear meter of the wall. Submit this page with your answer booklet.
 - b. What is the pore pressure on the sheet pile wall 1 m above the lowest point on either side of the wall?

- 5.(20 Marks) The table below gives the results from a standard compaction test on a soil using a mold with a 1000 cm³ volume. Using a value for the soil grain specific gravity of 2.67:
 - a. Plot the dry density-water content curve (a chart is provided at the end of the test for this),
 - b. Determine the optimum water content,
 - c. Determine the maximum dry density
 - d. Value of the air content at the maximum dry density.
 - e. The porosity and void ratio at the maximum dry density.

Mass	Water Content	
(g)	(%)	
2010	12.8	
2092	14.5	
2114	15.6	
2100	16.8	
2055	19.2	

6.(20 Marks) The results shown below were obtained at failure in a series of undrained triaxial tests on specimens of a saturated clay initially 38 mm in diameter and 76 mm long. Determine the shear strength parameters with respect to total stress.

Test	All-round	Axial Load	Axial
	pressure	· (N)	Deformation
7	(kPa)		(mm)
1	200	222	9.83
2	400	215	10.06
3	600	226	10.28

04-Env-A3/May 2012/ Page 6 of 7

Figure for use with Question 5

Figure for use with Question 6

04-Env-A3/May 2012/ Page 7 of 7