National Exams May 2010

07-Mec-B4, Integrated Manufacturing Systems

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- This is an OPEN BOOK EXAM. Any non-communicating calculator is permitted.
- 3. Any five questions constitute a complete paper. Only the first five (5) questions as they appear in your answer book will be marked.
- 4. Each question is of equal value.
- 5. Some questions require an answer in essay format. Clarity and organization of the answer are important.

07-Mec-B4/May 2010

- 1. Develop an inventory control system for a new product just starting production when the following information is given:
 - a) Production economic lot size is 1000 units.
 - b) Production rate (supplied daily to inventory) is 50 units per day.
 - c) Usage rate is 20 units per day.
 - d) Production start-up takes 10±5 days after an order is placed.
 - e) Annual cost of storing 1 unit is \$5.00.
 - f) Production cost of product is \$15.00.
 - g) 240 production and sales days per year.
- 2. a) Previous experience shows that the mean time between failures of a radar set is 240 hours. Assuming a constant failure rate, what is the chance of running the set for 24 hours without failure?
 - b) The following reliability requirements have been set on the subsystems of a communication system:

Reliability

	Renaomity
Subsystem	(for a 4-hour Period)
Receiver	0.970
Control System	0.989
Power Supply	0.995
Antenna	0.996

What is the expected reliability of the overall system if the above requirements are met?

07-Mec-B4/May 2010

- 3. a) Discuss a manufacturing situation in which centralized inspection would be particularly desirable.
 - b) In what ways may the use of data processing equipment and computers be of value in the quality control program?
 - c) In what way can statistical quality control aid in promoting the understanding and appreciation of quality control?
- 4. a) Discuss in greater detail why the volume to be produced has little effect on the design and operation of a system of production planning and control.
 - b) Assume you are organizing a small plant for the manufacture of flashlights. How many of the different types of orders would you use? Explain your use of each type.
 - c) Compare the advantages of centralized dispatching with those of decentralized dispatching.

07-Mec-B4/May 2010

6.

5. a) Given a nonlinear price function of

$$P = 21,000n^{-\frac{1}{2}}$$
 dollars per unit

where V = \$1000 per unit and FC = \$100,000 per period, determine:

- (a) The breakeven point.
- (b) The production level for maximum profit.
- b) Operating expenses and revenue for a manufacturing plant are closely approximated by the following relationships:

$$R = 100n - 0.001n^2$$

$$TC = 0.005n^2 + 4n + 200,000$$
 (bo

- (both in dollars)
- (a) What is the output for maximum profit?
- (b) What is the output at the breakeven point?
- (c) What is the output for minimum average cost?

- a) Control charts are maintained on the weight of an item. After a base period of 30 samples of size 3, $\Sigma \overline{X} = 12930$ g and $\Sigma R = 123$ g.
 - Compute the control limits and estimate the standard deviation of the item weights. (Assume that base period observations indicate the process to be in control.)
 - ii) If the process average of the weights shifts to 433 g, how long will it take to detect the shift using the control limits in part (a)?
 - Production is started to produce a newly designed component. To monitor the length, \overline{X} and R charts are started based on 25 subgroups of four items each. For these 25 subgroups, Σ \overline{X} = 500 cm and Σ R = 153.2 cm. Determine the 3 σ control limits. What is the probability that a shift of 2 cm in the process average would be detected on the first subgroup observed after the shift?